Параллелограмм и его свойства

В этом разделе мы рассматриваем геометрический объект параллелограмм. Все элементы параллелограмма наследуются от четырехугольника, поэтому рассматривать их мы не будем. А вот свойства и признаки заслуживают детального рассмотрения. Мы разберем:

  • чем признак отличается от свойства;
  • рассмотрим основные свойства и признаки, которые изучают в программе 8 класса;
  • сформулируем еще два дополнительных свойства, которые получим при решении опорных задач.

2.1 Определение параллелограмма

Чтобы правильно давать определения понятиям в геометрии, нужно не просто их заучивать, а понимать, как они формируются. В этом деле нам хорошо помогают схемы родовых понятий. Давайте посмотрим, что это такое.

Наш учебный модуль называется «Четырехугольники» и четырехугольник является ключевым понятием в этом курсе. Мы можем дать следующее определение четырехугольнику:

Четырёхугольник-это многоугольник, у которого четыре стороны и четыре вершины.

В этом определении родовым понятием будет многоугольник. Теперь дадим определение многоугольнику:

Многоугольником называется простая замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Ясно, что родовым понятием здесь выступает понятие ломаная. Если мы пойдем далее, то придем к понятию отрезка, а затем к конечным понятиям точка и прямая. Таким же образом мы можем продолжить нашу схему вниз:

Если мы потребуем, чтобы у четырехугольника две стороны были параллельны, а две нет, то мы получим фигуру, которая называется трапецией.

Трапециячетырехугольник, у которого две стороны параллельны, а две другие - не параллельны.

А в случае, когда все противоположные стороны параллельны, мы имеем дело с параллелограммом.

Параллелограммчетырехугольник, у которого противоположные стороны параллельны.

2.2 Cвойства параллелограмма

Свойство 1. В параллелограмме противоположные стороны равны и противоположные углы равны.

Докажем это свойство.

Дано: ABCD - параллелограмм.

Доказать: $\angle A = \angle C, \angle B = \angle D, AB = CD, AD = BC.$

Доказательство:

При доказательстве свойств любого геометрического объекта всегда вспоминаем его определение. Итак, параллелограмм – четырехугольник, у которого противоположные стороны параллельны. Ключевым моментом здесь выступает параллельность сторон.

Построим секущую ко всем четырем прямым. Такой секущей будет диагональ BD.

Очевидно, что нужно рассмотреть углы, образованные секущей и параллельными прямыми. Так как прямые параллельны, то накрест лежащие углы равны.

Теперь можно увидеть два равных треугольника по второму признаку.

Из равенства треугольников непосредственно следует первое свойство параллелограмма.

Свойство 2. Диагонали параллелограмма точкой пересечения делятся пополам.

Дано: ABCD - параллелограмм.

Доказать: $AO = OC, BO = OD.$

Доказательство:

Логика доказательства здесь такая же, как и в предыдущем свойстве: параллельность сторон и равенство треугольников. Первый шаг доказательства тот же, что у первого свойства.

Вторым шагом мы доказываем равенство треугольников по второму признаку. Обратите внимание, что равенство $BC=AD$ можно принять без доказательства (используя Свойство 1).

Из этого равенства следует, что $AO = OC, BO = OD.$

2.3 Опорная задача №4 (Свойство угла между высотами параллелограмма)

Дано: ABCD - параллелограмм, BK и BM - его высоты, $\angle KBM = 60^0$.

Найти: $\angle ABK$, $\angle A$

Решение: Приступая к решению этой задачи, нужно иметь ввиду следующее:

высота в параллелограмме перпендикулярна обеим противоположным сторонам

Например, если отрезок $BM$ проведен к стороне $DC$ и является его высотой ($BM \perp DC$), то этот же отрезок будет высотой к противположной стороне ($BM \perp BA$). Это следует из параллельности сторон $AB \parallel DC$.

Далее мы можем найти $\angle A$ из прямоугольного $\bigtriangleup ABK$: $\angle A = 90^0-30^0=60^0$

При решении этой задачи, ценным является свойство, которое мы получаем.

Дополнительное свойство. Угол между высотами параллелограмма, проведенными из его вершины, равен углу при соседней вершине.

2.4 Опорная задача №5 (Свойство биссектрисы параллелограмма)

Биссектриса угла А параллелограмма ABCD пересекает сторону BC в точке L, AD=12 см, AB =10 см. Найти длину отрезка LC.

Решение:

  1. $\angle 1 = \angle 2$ (АК - биссектрисса);
  2. $\angle 2 = \angle 3$ (как накрест лежащие углы при $AD \parallel BC$ и секущей АL);
  3. $\angle 1 = \angle 3$, $\bigtriangleup ABL -$ равнобедренный.

Далее несложно найти длину отрезка LC = 2 см.

По ходу решения задачи мы получили свойство:

Дополнительное свойство. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.
Следующая страница